A Cembranoid, Trocheliophorol, from the Cultured Soft Coral Sarcophyton trocheliophorum

Jui-Hsin Su,^{1,2} Yi Lu,¹ Wan-Yu Lin,¹ Wei-Hsien Wang,^{1,3} Ping-Jyun Sung,^{3,4} and Jyh-Horng Sheu^{*1,5}

¹Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

²Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 912, Taiwan

³Taiwan Coral Research Center, National Museum of Marine Biology & Aquarium, Checheng, Pingtung 944, Taiwan

⁴Graduate Institute of Marine Biotechnology, National Dong Hwa University, Checheng, Pingtung 944, Taiwan

⁵Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan

(Received November 16, 2009; CL-091009; E-mail: sheu@mail.nsysu.edu.tw)

A new cembranoid, trocheliophorol (1), and a known cembranoid sarcophine have been isolated from the cultured soft coral *Sarcophyton trocheliophorum*. The structure of **1** was determined on the basis of extensive spectroscopic analysis. Compound **1** is the first α , β -unsaturated- γ -lactone cembrane that was found to possess a tetrahydrofuran moiety with an 8,11-ether linkage in a 14-membered ring.

Our search of marine natural products has revealed that soft corals are important sources of novel secondary metabolites such as steroids,^{1,2} sesquiterpenoids,^{3,4} and diterpenoids.^{5,6} We have previously isolated a series of natural products, including cembranes and eunicellin-base diterpenoid from the cultured soft corals *Sinularia filexibilis*⁷ and *Klyxum simplex*.⁸ Recently, our chemical examination of the cultured soft coral *Sarcophyton trocheliophorum* (Alcyoniidae) has resulted in the isolation of two metabolites including one new cembranoid, trocheliophorol (1) (Chart 1), along with a known cembranoid sarcophine.⁹ The structure of **1** was elucidated on the basis of extensive spectroscopic analysis.

Specimens of the octocoral *S. trocheliophorum* were collected off the coast of Pingtung, southern Taiwan, and transplanted to a 4-ton cultivating tank equipped with a flow-through sea water system in December 2003. The cultured soft coral was harvested in December 2007. The sliced bodies of *S. trocheliophorum* (0.8 kg, wet wt) were minced and extracted exhaustively with EtOH ($1L \times 4$). The EtOH extract was filtered and concentrated under reduced pressure. The residue was partitioned between CH₂Cl₂ and H₂O. The solvent-free CH₂Cl₂ extract was concentrated and the residue (10.6 g) was chromatographed on Si gel by CC and eluted with EtOAc in *n*-hexane (0–100%, gradient) to yield 20 fractions. Fraction 9, eluted with *n*-hexane–EtOAc (3:1), was further purified by normal phase HPLC using *n*-hexane–EtOAc (4:1) to yield

Chart 1.

sarcophine (2.1 mg).⁹ Fraction 11, eluted with *n*-hexane–EtOAc (1:1), was further purified by normal phase HPLC using *n*-hexane–EtOAc (2:1) to yield **1** (1.5 mg).

Trocheliophorol (1) was obtained as a white powder. The HR-ESI-MS spectrum of 1 exhibited a sodiated molecule peak at m/z 355.1885 [M + Na]⁺, with a molecular formula C₂₀H₂₈O₄ (calcd for $C_{20}H_{28}O_4 + Na$, 355.1882) and implying seven degrees of unsaturation. The IR spectrum revealed the presence of carbonyl (ν_{max} 1749 cm⁻¹) and hydroxy (ν_{max} 3446 cm⁻¹) groups. The ¹³C NMR spectrum of 1 measured in CDCl₃ (Table 1), showed the presence of twenty carbon signals, which were assigned by the assistance of DEPT spectrum to three methyls, six sp³ methylenes, one sp² methylene, one sp² methine, three sp³ oxymethines, one sp³ quaternary carbon, and five sp² quaternary carbons (including one ester carbonyl). The NMR signals appearing at $\delta_{\rm C}$ 174.9 (C), 162.0 (C), 124.1 (C), 79.2 (CH), and 9.2 (CH₃) and $\delta_{\rm H}$ 5.43 (1H, d, J = 9.0 Hz) and 1.89 (3H, s), and the IR absorption at 1749 cm^{-1} were assigned to an α,β -unsaturated- γ -lactone functionality by comparison with those of similar metabolites,^{9,10} such as the corresponding data of sarcophine.9 Furthermore, one 1,1-disubstituted carbon–carbon double bond ($\delta_{\rm C}$ 145.8, C and 111.7, CH₂) and a

Table 1. ¹H and ¹³C NMR data of 1

C/H	$^{1}\mathrm{H}^{\mathrm{a}}/\delta$	¹³ C ^b /δ	
1		162.0	(C) ^d
2	5.43 d (9.0) ^c	79.8	(CH)
3	5.20 d (9.0)	117.9	(CH)
4		146.6	(C)
5	2.48 m, 2.15 m	34.1	(CH_2)
6	2.10 m, 1.60 m	31.8	(CH_2)
7	3.39 dd (7.5, 3.0)	74.6	(CH)
8		82.9	(C)
9	2.07 m, 1.82 m	36.9	(CH_2)
10	1.97 m, 1.74 m	31.6	(CH_2)
11	4.17 dd (11.0, 3.5)	76.8	(CH)
12		145.8	(C)
13	2.44 m	32.9	(CH_2)
14	2.52 dd (12.0, 8.5), 2.22 m	25.1	(CH_2)
15		124.1	(C)
16		174.9	(C)
17	1.89 s	9.2	(CH ₃)
18	1.92 s	19.3	(CH ₃)
19	1.16 s	20.0	(CH ₃)
20	5.00 s, 4.93 s	111.7	(CH_2)

Spectra recorded at ^a500 and ^b125 MHz in CDCl₃, respectively. ^c*J* values (in Hz) in parentheses. ^dDeduced from DEPT.

Figure 1. Key COSY and HMBC correlations for 1.

trisubstituted olefinic bond ($\delta_{\rm C}$ 146.6, C and 117.9, CH) were observed. The gross structure of 1 was further determined by the assistance of 2D NMR experiments (¹H–¹H COSY and HMBC). From the ¹H–¹H COSY spectrum of **1** (Figure 1), it was possible to establish four partial structures of consecutive proton systems extending from H-2 to H-3; H₂-5 to H-7; H₂-9 to H-11; and H₂-13 to H₂-14. These findings together with the HMBC correlations (Figure 1) observed from H₂-5 to C-3; H₂-6 to C-4; H-7 to C-8 and C-9; H-11 to C-12; H₂-13 to C-11 and C-12; and H₂-14 to C-1, C-2, and C-12 established the 14-membered ring structure of 1. The exocyclic methylene group was found to be attached to C-12, based on the HMBC correlations observed from H₃-20 to C-11, C-12, and C-13. The methyl groups attached at C-4 and C-8 were confirmed by HMBC correlations between H₃-18 to C-3, C-4, and C-5 and H₃-19 to C-7, C-8, and C-9, respectively. The molecular framework of 1 was further established by other HMBC correlations between H₂-14 to C-15 and H₃-17 to C-1, C-15, C-16. In considering the degrees of unsaturation and molecular formula, an oxa-bridged ether linkage was placed between C-8 and C-11. By comparison of ¹³C NMR data of the tetrahydrofuran moiety of **1** with those of a known metabolite, uprolide E acetate, which was isolated from the gorgonian Eunicea mammosa,11 the carbon shifts of 1 at positions from C-7 to C-12 were found to be in good agreement with those of uprolide E acetate at positions from C-3 to C-8.¹¹ On the basis of the above findings, the planar stucture of 1 could be established unambiguously.

The relative configurations of the four chiral centers at C-2, C-7, C-8, and C-11 in 1 were elucidated by detailed NOE analysis, as shown in Figure 2. It was found that H₃-18 showed NOE interactions with H-2 and H-7. Thus, assuming the β orientation of H-2, H-7 should be positioned on the β face. The NOE correlation observed between H-7 and H-11 also reflected the β -orientation of H-11. One of the methylene protons at C-9 (δ 2.07) exhibited NOE correlations with H-7, H-11 and was assigned as H-9 β while the other (δ 1.82) was denoted as H-9 α . The NOE correlation observed between H-9 α and H₃-19 reflected the α -orientation of methyl substituent at C-8. Furthermore, NOESY spectrum showed NOE interaction of H_3 -18 with H-2, but not with H-3, revealing the *E* geometry of the C-3/C-4 double bond. From the above evidence and the other NOE correlations (Figure 2) the structure of 1 was established unambiguously.

Figure 2. Selective NOESY correlations of 1.

unsaturated- γ -lactone cembrane posessing a tetrahydrofuran moiety with a rare 8,11-ether linkage.

Trocheliophorol A (1): white powder; mp 175–177 °C; $[\alpha]_D^{25}$ +32.3 (*c* 0.3, CHCl₃); IR (KBr) ν_{max} 3446, 2935, 1749, 1455, 1376, and 1220 cm⁻¹; UV (MeOH) λ_{max} 216 nm (log ε = 3.8); ¹H and ¹³C NMR data, see Table 1; ESIMS *m*/*z* 457 [M + Na]⁺; HRESIMS *m*/*z* 355.1885 [M + Na]⁺ (calcd for C₂₀H₂₈O₄ + Na, 355.1882).

This work was supported by grants from the National Science Council of Taiwan (NSC 98-2113-M-110-002-MY3) and National Museum of Marine Biology & Aquarium, Taiwan (NMM97008-1) awarded to J.-H. Sheu.

References

- 1 A. F. Ahmed, C.-F. Dai, Y.-H. Kuo, J.-H. Sheu, *Steroids* 2003, 68, 377.
- 2 A. F. Ahmed, Y.-T. Hsieh, Z.-H. Wen, Y.-C. Wu, J.-H. Sheu, J. Nat. Prod. 2006, 69, 1275.
- 3 C.-H. Chao, C.-H. Hsieh, S.-P. Chen, C.-K. Lu, C.-F. Dai, J.-H. Sheu, *Tetrahedron Lett.* 2006, 47, 5889.
- 4 H.-C. Huang, Z.-H. Wen, C.-H. Chao, A. F. Ahmed, M. Y. Chiang, Y.-H. Kuo, C.-H. Hsu, J.-H. Sheu, *Tetrahedron Lett.* 2006, 47, 8751.
- 5 Y.-J. Tseng, A. F. Ahmed, C.-F. Dai, M. Y. Chiang, J.-H. Sheu, *Org. Lett.* **2005**, *7*, 3813.
- 6 A. F. Ahmed, S.-H. Tai, Z.-H. Wen, J.-H. Su, Y.-C. Wu, W.-P. Hu, J.-H. Sheu, J. Nat. Prod. 2008, 71, 946.
- 7 J.-H. Su, Y.-F. Lin, Y. Lu, H.-C. Yeh, W.-H. Wang, T.-Y. Fan, J.-H. Sheu, *Chem. Pharm. Bull.* **2009**, *57*, 1189.
- 8 B.-W. Chen, Y.-C. Wu, M. Y. Chiang, J.-H. Su, W.-H. Wang, T.-Y. Fan, J.-H. Sheu, *Tetrahedron* **2009**, *65*, 7016.
- 9 B. F. Bowden, J. C. Coll, A. Heaton, G. König, M. A. Bruck, R. E. Cramer, D. M. Klein, P. J. Scheuer, *J. Nat. Prod.* **1987**, *50*, 650.
- 10 C.-Y. Duh, R.-S. Hou, J. Nat. Prod. 1996, 59, 595.
- 11 A. D. Rodríguez, J. J. Soto, I. C. Piña, J. Nat. Prod. 1995, 58, 1209.

It was noted that 1 is the first example of an α,β -